

HashTables

Using HashTables in FDK’s

This note describes how to use hashtables when making modules
for FrameViewer, FrameMaker and FrameMaker+SGML.
The motivation for writing this note is that the FDK documentation
is unclear about memory issues when using HashTables.

Version 1.10

Copyright by Jesper Storm Bache, February 1998.
jesper@bache.com

Latest version always found at www.bache.com/sgml.html

See section for 1.2 info. about “price”
it is
and

t to

 num-
lue

pass

 the
hing
1.1 Introduction

This note is a programmer oriented note and assumes knowledge of C++, the
FrameMaker’s Development Kit (FDK) and hashtables.

The note deals with version 5.5 of FrameMaker, but to the best of my knowledge
also relevant to version 5.1 (and maybe 4.x). This note only deals with allocation
deallocation of memory associated to hashtables.

The FDK has a set of instructions dealing with hashtables. These are named
F_Hashxx, where x is the specific function. The following instructions are relevan
memory handling:

¥ F_HashCreate

¥ F_HashDestroy

¥ F_HashSet

When you create a hashtable using the F_HashCreate you are asked to supply a
ber of parameters. Among these are: “keyLen” and “removeNotify”. keyLen is a va
determining the length of the hash-key. removeNotify is a procedure pointer.’

The exact meaning of “keyLen” is dependent on the key-type. If you want to use a
string as the key you pass “KEY_IS_STRING” as the value otherwise you should
the sized of the key (for example sizeof(<datatype>)) for the used datatype.

Memory allocation The FDK always copies the key. This means that you can dispose of the value of
key after using a F_HashSet. If you use strings for the key you might have somet
like:

StringT thekeyName = F_ApiGetString(theDocId, theObj, FP_Name);

F_HashSet(theHashTable, thekeyName, theDocumentName);

F_Free(thekeyName);
Page 1

Price

HashTables

ating

allo-

fer-
.
h on

eri-
s is

 $5
.com.

Notice that thekeyName is Free’ed after passing it to the F_HashSet procedure.

The procedure you pass as the removeNotify parameter, should deal with dealloc
the values of the hashtable.

Memory deallocation You should only free the hash-values if they are memory pointers.

For example if the hashvalue is an integer (IntT), you don’t have to worry about de
cation the value.

If the hashvalues are strings you must free the memory. Example:

VoidT removeNotify(GenericT dd) {

F_Free(StringT(dd));

}

If the hashvalues are references to objects you would use:

VoidT removeNotify(GenericT dd) {

myObjectType *theObj = (myObjectType *) dd;

delete(theObj);

}

Misc notes When you create a hashtable, you pass a reference to a “deadq” function. This re
ence should always be either NULL or point to a function that always return False
Why? Well - trust me (and the Adobe support people that I have been in touch wit
this matter). The next FDK documentation will show an example where the deadq
function returns False instead of True. If the function returns True, then you’ll exp
ence that entries are overwritten by other entries with a different key. This happen
the two different keys have the same hashing value.

1.2 Price

The information in this document is “Helpware”. If you find it useful please donate
- $10 to your favorite grassroot organization and send a mail to donations@bache
Subject: HelpWare. Contents: amount and organization.

1.3 Version history

1.3.1 Version 1.00

First draft.
Using HashTables in FDK’s Page 2

	1.1 Introduction
	1.2 Price
	1.3 Version history
	1.3.1 Version 1.00

